A Recoil Separator Underground Manoël Couder – Daniel Schürmann University of Notre Dame Joint Institute for Nuclear Astrophysics ### but... sometimes extrapolation fails! From: Claus Rolfs ## Low energy cross section challenge Effort to extract the γ signal at low energy (fight against background) is needed because cross section drops exponentially: #### Increase the number of interactions: - High intensity beam - High density target #### Improved detection techniques - Improved detection techniques - γ coincidence (Q value gate) - Active shielding - Tracking in γ-ray detector (GRETINA/GRETA/AGATA) - Underground lab #### Find additional tags to improve detection for (p,γ) and (α,γ) Inverse kinematics: "Heavy ion" beam on light target **DUSEL Town Meeting - November 2007** #### ALNA Accelerator Laboratory for Nuclear Astrophysics underground Systematic study of reactions relevant for the understanding of Helium burning in red giant and AGB stars towards the low energy range #### Phase 1: direct kinematics ¹H and ⁴He (accelerator 1 MeV) #### Phase 2: Inverse kinematics + a recoil separator coupled to a 1 MeV/u accelerator (RFQ/LINAC or Tandetron/Pelletron) # Existing device - Successful recoil separator are currently in use - Daresbury recoil separator @ HRIBF Oak Ridge - DRAGON @ TRIUMF dedicated to radiative capture induced by radioactive beams - ERNA @ Bochum/Germany designed for $^{12}C(\alpha,\gamma)^{16}O$ # DRAGON @ Triumf ### Design by Lucio Gialanella from Naples # St. George STrong Gradient Electro-magnetic Online Recoil separator for capture Gamma ray Experiments KN accelerator ## St. George: Design parameters Stable beam from the KN (4MV) Van de Graaff accelerator Beam intensity up to 100 μ A (~10¹⁵ pps) Beam mass < ~40 Acceptance | Reaction | E _{CM}
E _{beam} | ΔΕ/Ε (%) | θ (mrad) | |--|--------------------------------------|----------|---------------------| | ¹⁸ O(α, γ) ²² Ne | 360 keV
2. MeV | 7.4% | 40 mrad 2.3 deg. | | ²² Ne(α , γ) ²⁶ Mg | 460 keV
3. MeV | 6.5 % | 32 mrad
1.8 deg. | | 36 Ar(α,γ) 40 Ca | 1.25 MeV
12.5 MeV | 1.8 % | 9 mrad
0.97 deg. | Sample of the list of reactions **DUSEL Town Meeting - November 2007** ## St. George STrong Gradient Electro-magnetic Online Recoil separator for capture Gamma ray Experiments # Mass selection: Optimized Wien filter #### Wien filter fringe fields - longitudinal #### Aberration correction # 24 Mg(α , γ) 28 Si $^{5+}$ @ 8 MeV # ¹⁸O(α , γ)²²Ne³⁺ @ 2. MeV ### Lesson learned from design The lower the energy the larger the acceptance of the recoil separator → - Beam rejection more difficult to obtain - Large magnets - Large aberration **DEVELOPMENT TAKES TIME** #### Status and perspective #### St. George: - Elements ordered with Bruker Biospin - Charge state distribution/Energy loss through gas target have to be studied - We should start commissioning fall of 2008 #### Future underground: Design should start as soon as possible # Space requirements | Depth | >3000 m.w.e | |-------------------------------------|------------------------| | Space for accelerator | 15*10*5 m ³ | | Space for beam line 1st phase | 15*10*5 m ³ | | Space for RMS 2 nd phase | 15*20*5 m ³ | | Space for additional system | 8*8*5 m ³ | | (e.g. SF ₆ storage tank) | | | Space for control-acquisition | 8*8*5 m ³ | ## Requirements | Electrical power phase 1 | 100 kW | |--------------------------|---| | Electrical power phase 2 | 200 kW | | Hazardous material: | High pressure gas (SF ₆),
Cryogens, Hydrogen
target | - Crane for accelerator and target room - Ventilation/air conditioned room/ stable temperature - Small shop - Liquid Nitrogen - De-ionized water